Axiomatizations for universal classes

Michał Stronkowski

Warsaw University of Technology

Szklarska Poręba, May 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Identities are FO sentences of the form

 $\forall \bar{x} \varphi(\bar{x}),$

where φ is atomic: $\varphi = t(\bar{x}) \approx s(\bar{x})$ or $\varphi = R(t_1(\bar{x}), \dots, t_n(\bar{x}))$.

 $HS(\mathbf{A})$ - the class of homomorphic images of substructures of \mathbf{A} $P(\mathcal{C})$ - the class of direct products of structures from \mathcal{C} .

Birkhoff

A class of structures (in a fixed FO language) is HS and P- closed iff it is definable by identities.

Example 1: main trick

A - a structure

 x_a - a fresh variable for every element *a* from the carrier *A*.

$$\chi_{\mathbf{A}}^{\mathsf{HS}} = \exists \bar{x} \bigwedge_{\substack{\varphi \text{ atomic} \\ \mathbf{A} \not\models \varphi(a_1, \dots, a_n)}} \neg \varphi(x_{a_1}, \dots, x_{a_n}).$$

Fact

$$\mathbf{B} \models \chi_{\mathbf{A}}^{\mathsf{HS}}$$
 iff $\mathbf{A} \in \mathsf{HS}(\mathbf{B})$.

Corollary

A class is HS-closed iff it is definable by universal positive (possibly infinite) sentences.

Proof: If C is a HS-closed class, then it is definable by $\{\neg \chi_{\mathbf{A}}^{\mathsf{HS}} \mid \mathbf{A} \notin C\}.$

Example 1: main trick

A - a structure

 x_a - a fresh variable for every element *a* from the carrier *A*.

$$\chi_{\mathbf{A}}^{\mathsf{HS}} = \exists \bar{x} \bigwedge_{\substack{\varphi \text{ atomic} \\ \mathbf{A} \not\models \varphi(a_1, \dots, a_n)}} \neg \varphi(x_{a_1}, \dots, x_{a_n}).$$

Fact

$$\mathbf{B} \models \chi_{\mathbf{A}}^{\mathsf{HS}}$$
 iff $\mathbf{A} \in \mathsf{HS}(\mathbf{B})$.

Corollary

A class is HS-closed iff it is definable by universal positive (possibly infinite) sentences.

Proof: If C is a HS-closed class, then it is definable by $\{\neg \chi_{\mathbf{A}}^{\mathsf{HS}} \mid \mathbf{A} \notin C\}.$

Now Birkhoff follows by the closure under direct products. $(\mathbf{A} \nvDash R(a) \text{ and } \mathbf{B} \nvDash S(b) \text{ yield } \mathbf{A} \times \mathbf{B} \nvDash R(a) \vee S(b))$

Example 2: Łoś-Tarski and Mal'cev

Quasi-identities are FO sentences of the form

$$\forall \bar{x} \ \psi_1(\bar{x}) \land \cdots \land \psi_k(\bar{x}) \to \varphi(\bar{x})$$

where φ and all ψ s are atomic.

 $S(\mathbf{A})$ - the class of isomorphic images of substructures of \mathbf{A} $P_U(\mathcal{C})$ - the class of ultraproducts of structures from \mathcal{C} .

Mal'cev

A class is S, P and P_U -closed iff it is definable by quasi-identities.

Łoś-Tarski

A class is S and $\mathsf{P}_U\text{-closed}$ iff it is definable by FO universal sentences.

Fact

A class is S-closed iff it is definable by universal (possibly infinite) sentences.

Proof: Let

$$\chi^{\mathsf{S}}_{\mathsf{A}} = \exists \bar{x} \bigwedge_{\substack{\varphi \text{ atomic} \\ \mathsf{A} \not\models \varphi(a_1, \dots, a_n)}} \neg \varphi(x_{a_1}, \dots, x_{a_n}) \land \bigwedge_{\substack{\psi \text{ atomic} \\ \mathsf{A} \models \psi(a_1, \dots, a_n)}} \psi(x_{a_1}, \dots, x_{a_n})$$

Then $\mathbf{B} \models \chi^{\mathsf{S}}_{\mathbf{A}}$ iff $\mathbf{A} \in \mathsf{S}(\mathbf{B})$ and an S-closed class \mathcal{C} is definable by $\{\neg \chi^{\mathsf{S}}_{\mathbf{A}} \mid \mathbf{A} \notin \mathcal{C}\}$. Fact

A class is S-closed iff it is definable by universal (possibly infinite) sentences.

Proof: Let

$$\chi^{\mathsf{S}}_{\mathsf{A}} = \exists \bar{x} \bigwedge_{\substack{\varphi \text{ atomic} \\ \mathsf{A} \not\models \varphi(a_1, \dots, a_n)}} \neg \varphi(x_{a_1}, \dots, x_{a_n}) \land \bigwedge_{\substack{\psi \text{ atomic} \\ \mathsf{A} \models \psi(a_1, \dots, a_n)}} \psi(x_{a_1}, \dots, x_{a_n})$$

Then $\mathbf{B} \models \chi_{\mathbf{A}}^{\mathsf{S}}$ iff $\mathbf{A} \in \mathsf{S}(\mathbf{B})$ and an S-closed class \mathcal{C} is definable by $\{\neg \chi_{\mathbf{A}}^{\mathsf{S}} \mid \mathbf{A} \notin \mathcal{C}\}$.

Compactness

Let \mathcal{C} be P_{U} -closed. If $\mathcal{C} \models \forall \bar{x} \bigvee_{i \in I} \neg \psi_i(\bar{x}) \lor \bigvee_{j \in J} \varphi_j(\bar{x})$, then there are finite $I' \subseteq I$ and $J' \subseteq J$ such that $\mathcal{C} \models \forall \bar{x} \bigvee_{i \in I'} \neg \psi_i(\bar{x}) \lor \bigvee_{j \in J'} \varphi_j(\bar{x})$.

Fact

A class is S-closed iff it is definable by universal (possibly infinite) sentences.

Proof: Let

$$\chi^{\mathsf{S}}_{\mathsf{A}} = \exists \bar{x} \bigwedge_{\substack{\varphi \text{ atomic} \\ \mathsf{A} \not\models \varphi(a_1, \dots, a_n)}} \neg \varphi(x_{a_1}, \dots, x_{a_n}) \land \bigwedge_{\substack{\psi \text{ atomic} \\ \mathsf{A} \models \psi(a_1, \dots, a_n)}} \psi(x_{a_1}, \dots, x_{a_n})$$

Then $\mathbf{B} \models \chi_{\mathbf{A}}^{\mathsf{S}}$ iff $\mathbf{A} \in \mathsf{S}(\mathbf{B})$ and an S-closed class \mathcal{C} is definable by $\{\neg \chi_{\mathbf{A}}^{\mathsf{S}} \mid \mathbf{A} \notin \mathcal{C}\}$.

Compactness

Let \mathcal{C} be P_{U} -closed. If $\mathcal{C} \models \forall \bar{x} \bigvee_{i \in I} \neg \psi_i(\bar{x}) \lor \bigvee_{j \in J} \varphi_j(\bar{x})$, then there are finite $I' \subseteq I$ and $J' \subseteq J$ such that $\mathcal{C} \models \forall \bar{x} \bigvee_{i \in I'} \neg \psi_i(\bar{x}) \lor \bigvee_{j \in J'} \varphi_j(\bar{x})$.

Now Łoś-Tarski and Mal'cev follow.

Main trick generally

A class operator O is unary iff for every ${\mathcal C}$

$$\mathsf{O}(\mathcal{C}) = \bigcup \{ \mathsf{O}(\mathbf{A}) \mid \mathbf{A} \in \mathcal{C} \}.$$

With every structure **A** (in a fixed language) associate a sentence $\chi_{\mathbf{A}}$, say in $L_{\infty,\infty}$. Sentences $\chi_{\mathbf{A}}$ are <u>characteristic</u> for O iff for every **A** and **B**

$$\mathbf{B} \models \chi_{\mathbf{A}}$$
 iff $\mathbf{A} \in O(\mathbf{B})$.

Main Observation

If $\chi_{\mathbf{A}}$ are characteristic sentences for a unary class operator O, then every O-closed class \mathcal{C} is definable by $\{\neg\chi_{\mathbf{A}} \mid \mathbf{A} \notin \mathcal{C}\}$.

Strategy for axiomatization

Find characteristic sentences for O which are also preserved by O.

Example 3: strong homomorphisms

A homomorphism $h: \mathbf{A} \to \mathbf{B}$ is strong if $R^{\mathbf{B}} = h(R^{\mathbf{A}})$ for every relational symbol R different than \approx . It means that

 $\mathbf{B} \models R(\bar{b})$ iff $\exists \bar{a} \in A^n$ $h(\bar{a}) = \bar{b}$ and $\mathbf{A} \models R(\bar{a})$.

 $H_{sng}S(\boldsymbol{A})$ - the class of strong homomorphic images of substructures of \boldsymbol{A}

A quasi-identity is <u>weak</u> if its premise has no occurrences of \approx and functional symbols and every variable appears at most once in the premise.

Theorem

A class ${\mathcal C}$ is $H_{sng}S$ and P-closed iff it is definable by weak quasi-identities.

	Restrictions on defining sentences	
Closure under	in the negative part	in the positive part
the operator	no occurrences of	no occurrences of
S		functional symbols
H _E S	relational symbols	functional symbols
H _{Str} S	≈	
H _{uSng} S	pprox, functional symbols	
	\approx , functional symbols,	
H _{Sng} S HS	repetitions of variables	
HŠ	whole part	
		relational symbols,
$H_{-}^{-1}S$		functional symbols
H ^{⊑-1} S		pprox, functional symbols
$H^{-1}S$		whole part
$H_E^{-1}H_ES$	relational symbols	relational symbols
$H_{E}^{-1}H_{Str}S$	~	relational symbols
$H_{F}^{-1}H_{uSng}S$	pprox, functional symbols	relational symbols
H _F ⁻¹ HS	whole part	relational symbols
H _E H _{Str} ⁻¹ S	relational symbols	pprox, functional symbols
$H_{Str}H_{Str}^{-1}S$	~	≈
$H_{uSng}H_{Str}^{-1}S$	pprox, functional symbols	~
$HH_{Str}^{-1}S$	whole part	≈

The end

This is all

Thank you!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●